

UTKAL INSTITUTE OF ENGINEERING & TECHNOLOGY

DISCIPLINE: Civil Engineering	SEMESTER: 3 rd Sem	NAME OF THE TEACHING FACULTY: ER. Bijay	valaxmi Saho	0
SUBJECT:	No of Days/	Semester From Date:15/09/2022		
Structural Mechanics	Per week class allotted:	To Date:22/12/2022		
	5 Class P/W	No. Of Weeks: 15		
	-75	5		
WEEK	CLASS DAY	THEORY TOPICS	REM	ARKS
	1 st	Basic Principle of Mechanics: Force, Moment, support conditions.	Date	Dean/Principa 1
1 st	2 nd	Conditions of equilibrium, C.G & MI, Free body diagram.		
	3 rd	Review of CG and MI of different sections.		
	$4^{ m th}$	Introduction to stresses and strains: Mechanical properties of materials – Rigidity, Elasticity, Plasticity, Compressibility, Hardness, Toughness, Stiffness.		
	5 th	Introduction to stresses and strains: Other Mechanical properties of materials – Brittleness, Ductility, Malleability, Creep, Fatigue, Tenacity, Durability.		
2 nd	1 st	Types of stresses -Tensile, Compressive and Shear stresses		
	2 nd	Types of strains - Tensile, Compressive and Shear strains.		
	3 rd	Complimentary shear stress - Diagonal tensile / compressive Stresses due to shear, Elongation and Contraction.		
	4 th	Longitudinal and Lateral strains, Poisson's Ratio, Volumetric strain,		
	5 th	Computation of stress, strain, Poisson's ratio, change in dimensions and volume etc.		
	1 st	Hooke's law - Elastic Constants, Derivation of relationship between the elastic constants.		
	2 nd	Revision of previous classes about stress, strain and material property and all.		

3 rd	3 rd	Behaviour of ductile and brittle materials under direct loads.
	4 th	Stress Strain curve of a ductile material, Limit of proportionality.
	5 th	Elastic limit, Yield stress, Ultimate stress, Breaking stress.
4 th	1 st	Percentage elongation, Percentage reduction in area, Significance of percentage elongation and reduction in area of cross section.
	2 nd	Deformation of prismatic bars due to uniaxial load, Deformation of prismatic bars due to its self weight.
	3 rd	Principal stresses and strains: Occurrence of normal and tangential stresses,
	4 th	Concept of Principal stress and Principal Planes, major and minor principal stresses.
	5 th	Minor and major stresses and their orientations, Mohr's Circle and its application to solve problems of complex stresses.
5 th	1 st	Stresses in beams due to bending: Bending stress in beams.
	2^{nd}	Theory of simple bending – Assumptions – Moment of resistance – Equation for Flexure.
	3 rd	Stresses in beams due to bending: Flexural stress distribution.
	4 th	Curvature of beam – Position of N.A. and Centroidal Axis.
	5 th	Flexural rigidity – Significance of Section modulus.

6 th	1 st	Shear stresses in beams: Shear stress distribution in beams of rectangular.
	2 nd	Circular and standard sections symmetrical about vertical axis.
	3 rd	Stresses in shafts due to torsion: Concept of torsion.
	4 th	Basic assumptions of pure torsion, torsion of solid and hollow circular sections.
	5 th	Polar moment of inertia, torsion shearing stresses.
	1^{st}	Angle of twist, torsional rigidity, equation of torsion.
$7^{ m th}$	2 nd	Combined bending and direct stresses: Combination of stresses Combined direct and bending stresses.
	3 rd	Maximum and Minimum stresses in Sections, Conditions for no tension.
	4^{th}	Middle third/fourth rule, Core or Kern for square,
	5 th	Limit of eccentricity and
	1^{st}	Rectangular and circular sections, chimneys, dams and retaining walls.
	2 nd	Details of Retaining Walls and Chimneys.
8^{th}	3 rd	Columns and Struts, Definition.
	4 th	Short and Long columns, End conditions.
	5 th	Equivalent length / Effective length.
	l st	Revision of last classes about column and strut.
	2 nd	Revision of last classes about Equivalent and effective Length.
9 th	3 rd	Slenderness ratio, Axially loaded short and long column.
y ,	4 th	Euler's theory of long columns, Critical load for Columns with different end conditions.
	5 th	Shear Force and Bending Moment: Signs Convention for S.F. and B.M
	1 st	S.F and B.M of general cases of determinate beams with concentrated loads and udl only.
	2 nd	S.F and B.M diagrams for Cantilevers, Simply supported beams and Over hanging beams.

10 th	3 rd	Position of maximum BM, Point of contra flexure, Relation between intensity of load, S.F and B.M.
	4 th	Revision of last class about of point of contra flexure.
	5 th	Revision of previous classes about S.F. and B.M.
	1^{st}	Revision of S.F and B.M sign convention.
	2^{nd}	Revision of about Beam and Load and trusses.
11 th	3 rd	Introduction: Shape and nature of elastic curve (deflection curve).
	4^{th}	Relationship between slope deflection and curvature (No derivation).
	5 th	Importance of slope and deflection.
	1^{st}	Revision of last class about slope and deflection and its importance.
	2 nd	Revision of last class about Elastic curve.
12 th	3 rd	Slope and deflection of cantilever and simply supported beams under concentrated and
	4 th	Uniformly distributed load (by Double Integration method, Macaulay's method).
	5 th	Revision of last class about UDL(Uniformly Distributed Load)
	1^{st}	Revision of last class about Slope and deflection.
	2 nd	Indeterminacy in beams, Principle of consistent deformation/compatibility
13 th	3 rd	Analysis of propped cantilever.
	4 th	Fixed and two span continuous beams by principle of superposition
	5 th	SF and BM diagrams (point load and udl covering full span).
	1 st	Introduction: Types of trusses, statically determinate and indeterminate trusses
, th	2 nd	Degree of indeterminacy, stable and unstable trusses, advantages of trusses.
14 th	3 rd	Revision of last classes about Trusses and Beam and sign convention of S.F and B.M.
	4 th	Types of Trusses and their uses.
	5 th	Different types of roof trusses and their uses
	1 st	Previous year questions discussion and revision.
	2 nd	Again revision of chapter 08 and questions discussion.
15 th	3 rd	Revision of last chapter 05 and previous year questions will be discussed.
	4 th	Remind the important questions about all chapters.
	5 th	Important questions will be discussed for the semester Exam.

HOD

DEAN

